Detection of low salience whisker stimuli requires synergy of tectal and thalamic sensory relays.
نویسندگان
چکیده
Detection of a sensory stimulus depends on its psychophysical saliency; the higher the saliency, the easier the detection. But it is not known whether sensory relay nuclei differ in their ability to detect low salient whisker stimuli. We found that reversible lesions of either the somatosensory thalamus or superior colliculus blocked detection of a low salience whisker conditioned stimulus (WCS) in an active avoidance task, without affecting detection of a high salience WCS. Thus, thalamic and tectal sensory relays work synergistically to detect low salient stimuli during avoidance behavior, but are redundant during detection of highly salient stimuli. We also recorded electrophysiological responses evoked by high and low salience stimuli in the superior colliculus and barrel cortex of freely behaving animals during active exploration, awake immobility, and sensory detection in the active avoidance task. Field potential (FP) responses evoked in barrel cortex and superior colliculus by high intensity stimuli are larger and adapt more to frequency than those evoked by low-intensity stimuli. FP responses are also more suppressed and adapt less during active exploration, and become further suppressed in barrel cortex during successful detection of either high or low salient stimuli in the active avoidance task. In addition, unit recordings revealed that firing rate increases in superior colliculus during active exploration and especially during successful detection of either high or low salient stimuli in the active avoidance task. We conclude that detection of low salient stimuli is achieved by a sparse neural code distributed through multiple sensory relays.
منابع مشابه
Early sensory pathways for detection of fearful conditioned stimuli: tectal and thalamic relays.
Sensory stimuli acquire significance through learning. A neutral sensory stimulus can become a fearful conditioned stimulus (CS) through conditioning. Here we report that the sensory pathways used to detect the CS depend on the conditioning paradigm. Animals trained to detect an electrical somatosensory stimulus delivered to the whisker pad in an active avoidance task were able to detect this C...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملSpecific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism
Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...
متن کاملThalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties.
The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010